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We consider a mathematical model of injection of a pollutant-containing solution into a stratum covered with
a weakly penetrable clayey layer (water-confining stratum). The novelty of the statement of the problem lies
in taking account of the linear action of pollutants on the buffer (protective) capabilities of the swelling
clayey layer covering the stratum.

Introduction. Pleshchinskii et al. proposed a model of the rheological properties of porous media with a
swelling skeleton and a model of the nonlinear effects of yield of water of the swelling clayey layer in pumping water
out of the underlying stratum. Examples of swelling media in nature include, in particular, clayey rocks, which often
play the role of weakly penetrable barriers (water-confining strata) between aquifers. The isolating (buffer) properties
of water-confining strata have to be properly taken into account in calculating the characteristics of the underground
disposal of liquid wastes (polluted solutions). In so doing, the basic requirement is the exclusion of ingress of pollut-
ants from the stratum chosen for disposal into adjacent aquifers to prevent subsequent migration of pollutants in them.
It is clear that the requirement of absolute isolation of the water-confining stratum is impracticable. Therefore, one has
to calculate the process of penetration of the injected solution impurity through the clayey layer (water-confining stra-
tum) into its adjoining aquifer to forecast the effective isolation of pollutants. The simplest approach to the description
of the buffer properties of the water-confining stratum is to treat it as a binary medium (one system of pores, usually
called cracks, is highly penetrable, and the second one, usually called blocks, is weakly penetrable). In so doing, the
equation of impurity transport in such a medium without taking into account the diffusion (hydrodispersion) is de-
scribed by the equations [3]

m1 
∂C1

∂t
 + q∇C1 + γ (C1 − C2) = 0 ,   m2 

∂C2

∂t
 = γ (C1 − C2) . (1)

Obviously, the assumption that the mass transfer between cracks and blocks is fast (the condition γ → ∞ corre-
sponds to this) leads to the equality C1 = C2. Then the first equation of system (1) reduces to the following equation:

(m1 + m2) 
∂C1

∂t
 + q∇C1 = 0 , (2)

which describes the propagation of the retarded impurity (pollutant) front in a porous medium (effect of retardation of
pollution by a biporous medium).

In the case where the impurity is sorbed by the solid phase, for the equilibrium sorption corresponding to the
Henry isotherm with a distribution coefficient Ω we have the equation [3]

m 
∂C

∂t
 + q∇C + Ω 

∂C

∂t
 = 0 . (3)

It is mathematically equivalent to Eq. (2). Therefore, in hydroecology the coefficients of equilibrium adsorption (distri-
bution coefficients) and absorption of impurity by the micropores of weakly penetrable blocks are often "identified"
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and the so-called retardation factor Rm = m1 + m2 or Rm = Ω + m is introduced. Sometimes the retardation factor is
introduced as follows: m1 + m2 = m1(1 + R ′), R ′ = m2

 ⁄ m1 (or R ′ = Ω ⁄ m). In practice, it is difficult indeed to distin-
guish between the cases of true adsorption and absorption of impurity by the micropores of weakly penetrable blocks
or aggregates. The most typical example of such a medium is clayey rocks characterized by an especially large spe-
cific fraction of micropores [4]. In other words, for clays with m2 >> m1.

We shall further proceed from the fact that in clays only impurity (pollutant) absorption by the micropores
takes place, and, due to this, effective retardation of the penetration of the impurity through the clayey layer (isolating,
or buffer, effect of water-confining strata) occurs. However, unlike the simple biporous medium, the impurity absorp-
tion by weakly penetrable blocks of a clayey rock obeys a nonlinear equation [1, 4]; therefore, the application of for-
mulas of the type (2) or (3) will lead to a considerable error. To calculate the quantity of impurity retarded by blocks,
let us use the corresponding relations from [1]. They are actually equivalent to the equation of nonlinear adsorption.
The latter, as is known [3], leads to a smearing of the concentration fronts, as does the diffusion or hydrodispersion.
Therefore, in order to investigate the contribution of the nonlinear absorption of the impurity by the micropores of
blocks of a clayey rock to the buffer properties of the water-confining stratum independent of the diffusion smearing,
we shall use the so-called diffusion-free approximation, i.e., assume that the diffusion coefficient (hydrodispersion) in
the mass-transfer equation is equal to zero.

Of fundamental importance in describing the isolating (buffer) properties of clayey water-confining strata is
the application of a theory that permits using both mechanical and physicochemical parameters of the clay. Moreover,
it is necessary to take into account the influence of the swelling effects of clayey minerals on the ability of the solu-
tion to penetrate through the rock. The proposed models and their solutions [1, 2] make it possible to effectively re-
alize the above-stated problems. It should be noted, however, that in this case two new unknowns appear: the impurity
concentration of the polluting component in the water stratum and in the clayey layer. Thus, it is required to comple-
ment the system of equations describing the clayey layer and the water stratum in order to close it for a larger number
of unknowns. Apparently, it is necessary to determine the impurity concentration in the water stratum and in the
clayey layer. It is necessary to note that all designations of the quantities were taken by us from [1, 2], and the new
ones were introduced so that the logical interrelation with the "old" designations is preserved.

Equation for the Impurity Concentration in the Clayey Layer. We shall describe the mass transfer in the
clayey layer in the approximation of a biporous medium [3]. Let us write the mass-balance equation for the impurity
density in the clayey layer. We assume that the value of the relative volume of transport (highly penetrable) pores in
the clayey layer mc is negligibly small, so the volume properties of the clay are determined by the volume of blocks.
Thus, we can write

∂ (qcC)
∂z

 + 
∂ (mc.bCc.b)

∂t
 = 0 . (4)

For the cations and anions of a pore solution in clayey blocks, the equation [1, 4]

C
__

1 = 
e′
2

 + √e′2

4
 + C

2
 ,   C

__
2 = − 

e′
2

 + √e′2

4
 + C

2
 ,

(5)

where e′ = 2π ⁄ RT; π = eRT ⁄ 2(V0 − Vs), was obtained earlier. Observing that Cc.b = C
__

1 + C
__

2, we have for the solution
concentration in the clayey layer

∂ (qcC)
∂z

 + 
∂
∂t

 







1 − 

Vs

V0




 √(e′)2 + 4C2


 = 0 . (6)

Equation for the Impurity Concentration in the Stratum. As for the clayey layer, for the stratum it is re-
quired to introduce one more equation for determining the new unknown quantity — the impurity concentration in the
filtering solution. Let us write the equation of impurity-concentration transfer in the stratum
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ma 
∂cw

∂t
 + div (qcw) = 0 , (7)

which in the radial coordinate system has the form

ma 
∂cw

∂t
 + 

∂
∂z

 (qzcw) + 
1

r
 
∂
∂r

 (rqrcw) = 0 .

Averaging this equation over z and taking into account that qr = −
ka

η
 
∂p

∂r
 and qz(z0, t) = −

kc

η
 
∂w

∂z
(0, t), we get

ma 
∂cw

∂t
 − 

ka

η
 
1

r
 
∂
∂r

 



r 
∂p

∂r
 cw




 = cw 

kc

Hη
 
∂w

∂z
 . (8)

Dimensionless System of Equations for the Clayey Layer. Taking into account the previous results, let us
write the dimensionless equations of the process for the clayey layer. We assume that the initial value of the concen-
tration in the stratum is known to us and is equal at all points of the stratum. Denoting δ1 = V0

0 ⁄ Vs, δ2 =
eRT ⁄ (2ΓVs), δ3 = c0RT ⁄ Γ, and c

_
c = C ⁄ c0, we write

σ
__

 + w
__

 =1 ; (9)

∂θ
∂τ

 + 
∂q
_

c

∂z
_  = 0 ;

(10)

q
_

c = − 
∂w
__

∂z
_  ;

(11)

f = Vs (δ1 exp θ − 1) ,    V0
(0)

 = 1 ,   Vs = 
2
3

 ;
(12)

π
__

 = 
δ2

δ1 exp θ − 1
 ,   δ2 C 2 ;

(13)

∂f

∂τ
 = α
__

 (Π
__

 − σ
__
) ,   α

__
 = T0αΓ ;

(14)

Π
__

 = √4π
__

2 + δ3
2 c
_

c
2  − δ3 c

_
3 ; (15)

∂ (q
_

cc
_

c)

∂z
_  + 

∂

∂τ
 










1 − 

1

δ1 exp θ




 √4π

__
2

δ3
2

 + 4c
_

c
2






 = 0 . (16)

The initial conditions are

w
__

 (z
_
, r
_
, 0) = p

_
 (r
_
, 0) ,   c

_
c = 0 ; (17)
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and the boundary conditions are

c
_

c (0, τ) = c
_

w ,   w
__

 (0, τ) = p
_

 ,   w
__

 (1, τ) = δ4 . (18)

Dimensionless System of Equations for the Stratum. Now it is necessary to obtain the dimensionless form
of the mass-transfer equations in the stratum. The initial value of the concentration at the stratum inlet is c0. Denoting
c
_

w = cw
 ⁄ c0, we have from (8)

ma 
∂cw

∂t
  = 

kaz0Γ

ηUr∞
2

 
1

r
_ 
∂

∂r
 



r
_
 
∂p
_

∂r
_ c
_

w



 = c
_

w 
kcΓ

HηU
 
∂w
__

∂z
_  .

Introducing the quantities E = 
kaz0Γ
ηUr∞

2  C 10−2 and F = 
kcΓ

HηU
 = 

kcΓρwg

HηUρwg
 = 

KΓ

HUρwg
 C 1, we write, with account for the

designations of [2], the system of mass-transfer equations for the stratum

A
__

 
1
r
_ 
∂
∂r
_ 



r
_
 
∂p
_

∂r
_

 + 
∂w
__

∂z
_  = 0 ,   A

__
 = 10

−1
 ; (19)

ma 
∂c
_

w

∂t
 − E 

1
r
_ 
∂
∂r
_ 



r
_
 
∂p
_

∂r
_ c
_

w



 = c
_

wF 
∂w
__

∂z
_  . (20)

The initial conditions are

c
_

w (r
_
, 0) = 0 ,   p

_
 (r
_
, 0) = δ5 + 





pb

Γ
 − δ5




 exp 




− 

r
_
 − ε
ε




 ,   ε = 

rb
r∞

 ,   δ5 = 
p∞
Γ

 .

The boundary conditions of the first kind are

c
_

w (ε, τ) = 1 ,   p
_
 (ε, τ) = 

pb

Γ
 ,   p

_
 (1, τ) = δ5 ,

and of the second kind

c
_

w (ε, τ) = 1 ,   qr (ε, τ) = const ,   p
_

 (1, τ) = δ5 .

Results and Discussion. The problem has been solved numerically with the use of the same difference
scheme as in [2]. One of the specific features of the process is the radial distribution of the impurity concentration in
the stratum and in the clay. While in the first case the radial distribution plot of the impurity concentration in the stra-

Fig. 1. Impurity concentration in the stratum (a) and in the clay (b) versus the
distance to the borehole: 1) concentration profile for τ = 0.5τst; 2) same, τ = τst.
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tum has a rather traditional form (see Fig. 1a), in the second case it is unusual (Fig. 1b). The mean value of the im-
purity concentration in the clay layer is always lower than the stratum values. This is due to the nonlinear relations
(5) for the impurity absorption by clay micropores and is not an averaging artefact. Another feature of the process
showed up as different shrinkage values of the clay with and without account for the swelling effect (δ2 = 0 or
δ2 ≠ 0 respectively). For instance, with account for the swelling effect the shrinkage value of the layer is smaller than
in the absence of the action of the swelling forces at equal rates of impregnation of the clayey layer with the polluted
solution. Thus, the injection of polluted solutions into the stratum affects, in the first place, the deformation of the
separating clayey layer rather than the dynamics of penetration of the solution through the clay. Actually, this effect is
quite clear. Shrinkage in our model is realized by forcing out water from the clayey blocks. The osmotic pressure im-
pedes the forcing out of water, which just shows up as smaller shrinkage values of the clayey layer.

Conclusions. The solution of the problem on the underground disposal of liquid pollutants with account for
the features of the swelling and deformation of the higher-lying isolating clayey layer has shown that how the process
proceeds strongly depends on the physical characteristics of the layer being deformed. Since the swelling clayey layer
"resists" shrinkage, its value decreases as the pollutant passes through this layer. The high shrinkage values may cause
crack extension in the clayey layer. Consequently, we can speak of preferable conditions for disposal of liquid wastes
in strata isolated from the other ones by clayey rocks with swelling mineral phases present in them.

This work was supported by the International Science and Technology Center (project Nos. 3225, 3590, and
No. 3193).

NOTATION

A
__

, dimensionless complex; C, solution concentration in a highly penetrable system of pores (cracks) of clay;
Cc.b, solution concentration in weakly penetrable clayey blocks; c

_
c, dimensionless concentration of solution in a

highly penetrable system of pores (cracks) of clay; cw, solution concentration in the stratum; sc
_

ctz, layer-height-aver-
aged dimensionless solution concentration in a highly penetrable system of pores (cracks) of clay; c

_
w, dimensionless

solution concentration in the stratum; c0, concentration of the solution injected into the stratum; C1 and C2, solution
concentrations, respectively, in highly and scarcely penetrable zones in a biporous medium; C

__
1, cation concentration

in clay; C
__

2, anion concentration in clay; E, F, dimensionless complexes; e, content of cations-compensators of the
clayey particle charge in volume V0

(0); e′, specific exchange capacity of clay; f, content of bound water in volume
V0; g, gravitational acceleration; H, aquifer power; ka, penetrability of the aquifer; kc, penetrability of the clayey
layer; K, filtration factor in the stratum, m ⁄ day; m, medium porosity; ma, aquifer porosity; mc, porosity of cracks in
the clay; mc.b, porosity of clayey blocks; m1 and m2, porosity of highly and poorly penetrable zones in a biporous
medium; p, pressure in the aquifer; pb, pressure in the borehole; p∞, pressure on the feed contour; q, vector of the
speed of filtration in the stratum; qc, speed of filtration in the clayey layer; qr and qz, radial and vertical compo-
nents of the speed of filtration in the aquifer; R, universal gas constant; Rm(R ′), retardation factor; r, radius; rb,
borehole radius; r∞, contour radius; T, temperature; t, time; T0, characteristic time of the process; U, characteristic
speed of filtration in the stratum; V0, representative volume of the medium; V0

(0), initial value of the representative
volume of the medium; Vs, volume of the solid phase in the V0 composition; w, pressure in the clayey layer; z, ver-
tical coordinate; z0, clay-layer thickness; α, constant of mass transfer (absorption rate of water by clay blocks) in
swelling; δi (i = 1, 2, 3, 4, 5), dimensionless complexes; Γ, rock pressure; γ, constant of mass transfer of blocks and
cracks in a biporous medium; ε, ratio rb

 ⁄ r∞ (dimensionless size of the borehole); η, water viscosity; θ, shrinkage;
ρw, water density; π and Π, osmotic pressure for zero and nonzero impurity concentration; σ

__
, normalized (dimen-

sionless) effective tension; τ, dimensionless time; τst, time of going to the stationary stage; Ω, Henry adsorption con-
stant (distribution coefficient). Subscripts: 0, characteristic scale; 1, parameters of the highly penetrable porous
medium (cracks); 2, parameters of the poorly penetrable porous medium (porous blocks); a, aquifer; b, borehole; c,
clay; c.b, clayey blocks; ∞, feed contour; m, entire medium; r, radial component of the speed of filtration in the
aquifer; z, vertical component of the speed of filtration in the aquifier; s, solid phase; st, stationary stage of the
process; w, water; overscribed bar, dimensionless quantity (except for the concentrations of ions and anions in the
clay); angle brackets, averaging over the layer height.
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